Описание контроллера заряда акб, детальное руководство по изготовлению

Модули защиты и контроллеры заряд/разряд для Li-ion аккумуляторов

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

Решение от Advanced Analog Technology — AAT8660 Series.

Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).

FS326 Series

Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.

В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.

LV51140T

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

Обозначение Порог отключения по перезаряду, В Гистерезис порога перезаряда, мВ Порог отключения по переразряду, В Порог включения перегрузки по току, мВ
R5421N111C 4.250±0.025 200 2.50±0.013 200±30
R5421N112C 4.350±0.025
R5421N151F 4.250±0.025
R5421N152F 4.350±0.025

SA57608

Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

Обозначение Порог отключения по перезаряду, В Гистерезис порога перезаряда, мВ Порог отключения по переразряду, В Порог включения перегрузки по току, мВ
SA57608Y 4.350±0.050 180 2.30±0.070 150±30
SA57608B 4.280±0.025 180 2.30±0.058 75±30
SA57608C 4.295±0.025 150 2.30±0.058 200±30
SA57608D 4.350±0.050 180 2.30±0.070 200±30
SA57608E 4.275±0.025 200 2.30±0.058 100±30
SA57608G 4.280±0.025 200 2.30±0.058 100±30

SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.

Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет

11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты — в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (

4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.

Контроллер заряда аккумулятора

Пост опубликован: 22 апреля, 2020

Самодельный контроллер для зарядки аккумулятора – простой и надёжный

Купить контроллер для зарядки АКБ чрезвычайно просто, стоит он дёшево, но надёжность таких устройств внушает опасения. Неизвестно на чём в этот раз сэкономят китайские производители. А вот собранный своими руками контроллер зарядки аккумулятора, будет безотказным! Ведь собрали его не для продажи, а для долгой эксплуатации.

Назначение и схема зарядного контролера

Предлагаемый к самостоятельной сборке контроллер чрезвычайно простой, и поэтому безотказный. Он прекрасно дополняет альтернативные источники энергии, такие как ветрогенераторы или солнечные панели. Особых знаний в схемотехнике и пайке не потребуется. Разумеется, что если паяльник вы не пользовались по назначению, то лучше потренироваться на каких-то ненужных проводках, чтобы случайно не перегреть рабочие детали.

В базовую схему добавлены несколько элементов, которые делают работу контролера более стабильной. Например, сопротивления 15-18 , подбирались эмпирически. Они устранили спонтанный нагрев таймера-микросхемы ( 3 ) и сделали установку значений подстроечных резисторов ( 1 и 2 ) более точной. Дополнительно, реле ( 10 ) было припаяно «навесным монтажом». Для неопытных радиолюбителей это будет существенным подспорьем в работе, и такой вариант делает плату универсальной, т.е. с реле можно экспериментировать в процесс эксплуатации.

Установка полевого транзистора IRF 540 обусловлена тем, что сигнал от таймера NE 555 выходит с напряжением 5V, а реле 1N4007 12-тивольтовое.

Принципы работы контроллера заряда АКБ

После выставления нужных параметров на подстроечных резисторах и включении прибора в систему, работа контроллера происходит следующим образом:

  1. Аккумулятор получает зарядный ток до достижения выставленного уровня напряжения. Затем зарядка останавливается, а напряжение с альтернативного источника энергии направляется только к потребителю.
  2. При разрядке аккумулятора до нижнего предела, выставленного в подстроечном резисторе ( 1 ), автоматически включается зарядка.

Обратите внимание, что в автоматическом режиме, во время зарядки питание к потребителю от АКБ не подаётся. Для того чтобы подать напряжение, есть кнопки 11 и 13 , которые работают в ручном режиме.

ВАЖНО: данный контроллер заряда аккумулятора ориентирован за продление ресурса работы АКБ! Он строго лимитирует превышение уровня зарядки и разрядки. С этой задачей такая схема справляется на 100%!

Список деталей контроллера зарядки АКБ

Каждая деталь пронумерована в снимке, а на схеме видно размещение резисторов 12 и 12/1 , они припаяны с обратной стороны платы.

Читайте также  Самостоятельная замена ремня генератора lada granta инструкции с фото

1 Подстроечный резистор (установка нижнего предела ≈11,8 V);

2 Подстроечный резистор (установка верхнего предела ≈14,4 V (оба резистора на 10 kOm);

3 Таймер — Микросхема NE 555 + гнездо для микросхемы;

4 Стабилизатор напряжения LM7805 (5V);

5 Конденсатор неполярный 330 nF (на вход);

6 Конденсатор неполярный 100 nF (на выход);

7 Полевой транзистор IRF 540;

8 Биполярный NPN транзистор 2N3904;

9 Светодиоды индикации: синий и красный;

10 Реле 1N4007 (12 вольт 10 ампер);

11 Резистор 300 Om + провод для отключения «Режима заряда»(оформляется на корпусе);

12/12-1 Резисторы 100 Om + 330 Om (припаяны с обратной стороны);

13 На кнопку включения «Режима зарядки» (оформляется на корпусе);

14 Радиатор;

15 Резистор 1,5 kOm;

16 Резистор 39 kOm;

17 Резистор 6,2 kOm;

18 Резистор 30 kOm;

19/20/21 Резистор 1 kOm;

На этой схеме обозначены места фиксации каждой детали.

Изготовление платы

Для работы потребуется:

  • Стеклотекстолит фольгированный;
  • Наждачная бумага (очень мелкозернистая и нулёвка);
  • Растворитель для обезжиривания;
  • Глянцевая бумага для лазерного принтера (1 лист);
  • Утюг;
  • Лимонная кислота;
  • Перекись водорода;
  • Соль пищевая;

Для платы понадобится кусок текстолита размером 4Х6 сантиметра. Обрезать её в нужный размер лучше ножовкой по металлу. Потому что при работе ножницами текстолит может расслоиться и появятся грубые заусенцы.

Обязательно обрабатываем кромку мелкой наждачной шкуркой. Чтобы снять слой оксидной плёнки, очень аккуратно обрабатываем поверхность нулёвкой.

Последний подготовительный этап – обезжиривание. Но это перед тем как приложить распечатанную схему.

На лазерном принтере, перед распечаткой схемы, надо убрать функцию «Экономия тонера», чтобы отпечаток был насыщенным. Использование глянцевой бумаги предпочтительнее потому, что она менее гигроскопичная, и тонер не будет впитываться в структуру материала.

СОВЕТ: распечатайте на одном листе несколько одинаковых рисунков. Если что-то пойдёт не так, но под рукой всегда окажется дубликат.

Полученное изображение обрезаем в размер, не касаясь пальцами лицевой стороны снимка.

Расстелите на ровный стол салфетку, совместите снимок с текстолитом и аккуратно уложите этот «бутерброд» на подготовленную подложку.

Максимально разогретым утюгом придавите на 30-40 секунд заготовку. Без всяких движений, чтобы не было смещения, поднимите утюг. Теперь накройте бумажной салфеткой в 3-4 слоя, и ещё раз прижмите утюгом, примерно на 1 минуту.

Затем можно сделать несколько разглаживающих движений. Утюг снимаем, текстолит с пристывшим к нему листом фотобумаги на 2-3 минут опускаем в тёплую воду, чтобы отмокла целлюлозная основа.

Аккуратно снимаем бумагу и ватной палочкой смоченной в спирте удаляем её остатки. На фольгированном стеклотекстолите должен остаться тонер на месте будущих дорожек.

Травление платы контроллера зарядки АКБ

Предлагаемый состав для травления состоит из наиболее доступных реактивов и обладает хорошей химической активностью. Единственный его недостаток перед растворами на основе хлорного железа и медного купороса, это невозможность длительного хранения.

В 100 мл перекиси сначала растворяют 30 гр. лимонной кислоты, затем добавляют поваренную соль и перемешивают до тех пор, пока не останется кристаллов.

СОВЕТ: если нет перекиси водорода, то растворите 6 таблеток Гидроперита в 100 мл. воды.

Готовый реактив наливаем в пластиковый контейнер и аккуратно опускаем заготовку платы.

Лучше её положить лицевой стороной вверх, потому что образующиеся газовые пузырьки будут изменять скорость реакции на разных участках текстолита.

Рекомендуется чуть шевелить заготовку, касаясь её края зубочисткой или соломинкой. Можно чуть «помочь» травлению кисточкой. При температуре раствора 25-30˚C, процесс занимает 25-35 минут.

Протравленную заготовку промываем под струёй холодной воды, высушиваем и удаляем тонер нулёвкой. Работать абразивной шкуркой надо без нажима и фанатизма. Достаточно нескольких лёгких движений.

ВАЖНО: следите чтобы не удалить слой медной фольги!

Можно сделать несколько движений наждачной бумагой, а потом тщательно протереть поверхность салфеткой смоченной в уайт-спирите.

Финишная подготовка платы

Для сверления отверстий используют сверло 0,8 мм. Стеклотекстолит сверлиться достаточно легко, но всё равно следите, чтобы дрель была направлено строго вертикально, а рука не дрожала.

СОВЕТ: положите плату на деревянный брусок, просверлите два угловых отверстия по диагонали и через них зафиксируйте заготовку тонким сапожным гвоздиком или отточенной скрепкой. Остальные отверстия можно сверлить, удерживая дрель двумя руками.

После сверления нулёвкой надо аккуратно удалить заусенцы.

Для более лёгкого лужения дорожек, рекомендуется приготовить спирто-канифольный флюс. Для этого 5 гр. порошка канифоли, растворяют в 20 мл. спирта. Удобнее это делать в пузырьке от «лака для ногтей».

Спирто-канифольным флюсом покрывают всю поверхность платы, а затем тонким слоем наносят припой на медные дорожки.

По окончании лужения, канифоль необходимо удалить с поверхности платы. Так как канифоль на 90% состоит из дитерпеновых кислот, то её остатки вызывают коррозию металлов. Удаляют канифоль спиртом или ацетоном.

Пайка деталей на плату

Этот процесс описывать невозможно, необходимо просто по очереди устанавливать детали в свои гнёзда, и припаивать их. Если вы никогда до этого не паяли, то потренируйтесь на обрезках стеклотекстолита и кусочке медного проводка.

Очень важно не допустить перегрева деталей и не залить припоем соседние гнёзда и дорожки, чтобы не сформировалась перемычка. Тщательно контролируйте этот аспект пайки.

Перед установкой радиодеталей в посадочные гнёзда, нанесите на них спирто-канифольный флюс.

Сборка в корпус и проверка

Корпус подбирается индивидуально. Его можно склеить самостоятельно из пластика, или купить что-то более-менее подходящее. Места для вывода светодиодов и кнопок ручного управления определяют после фиксации платы. При желании, можно сделать отверстие для подстроечного резистора.

Не старайтесь сразу брать очень маленький корпус.

Для проверки контроллера заряда аккумулятора потребуется регулируемый преобразователь DCDC, которым будет имитироваться напряжение на клеммах АКБ.

Нормально разомкнутый вывод реле, подключается к мультиметру в режиме прозвонки.

Когда аккумулятора заряжен, и нагрузка к нему подключена, то мультиметр подаёт непрерывный сигнал, а на контроллер горит синий светодиод.

Как только напряжение упадёт ниже выставленного предела, то включается зарядка. На контроллере заряда загорается красный светодиод, а на табло мультиметра меняется индикация.

Всё, контроллер заряда аккумулятора готов, можно пользоваться.

Вероятно, Вам также понравятся следующие материалы:

Спасибо, что дочитали до конца! Также Не забывайте подписываться на наш канал, Если статья Вам понравилась!

Следите за нами в твиттере: https://twitter.com/Alter2201

Делитесь с друзьями, оставляйте ваши комментарии

Добавляйтесь в нашу группу в ВК:

и предлагайте темы для обсуждений, вместе будет интереснее.

ЗАРЯДНОЕ ДЛЯ АВТО НА КОНТРОЛЛЕРЕ

Обычные зарядные устройства к автоаккумуляторам, продающиеся по цене от 2000 рублей, представляют из себя простейший блок питания с диодным мостом и амперметром для контроля тока. Можно ли долго пользоваться таким ЗУ, если цена нового свинцового аккумулятора Bosch достигает 5000 руб? Каждый сам решает для себя. Вот автор и решил немного потратиться и создать зарядку, имеющую все необходимые режимы по быстрому и безопасному восстановлению ёмкости АКБ.

Описание зарядного устройства

  1. Измерение напряжения аккумулятора.
  2. Измерение тока заряда и разряда. Ток измеряется датчиком тока на ОУ.
  3. Стабилизация зарядного тока на выбранном уровне. Алгоритм регулятора – пошаговый, управление током – ШИМ (Установка тока ведется из основного окна прибора.). 3.1 Выбор режима заряда – постоянным током или пульсирующем (десульфатация).
  4. Отключение заряда если напряжение достигло заданного уровня выбранном в меню.
  5. Стабилизация тока разряда на выбранном уровне в режиме разряда. Алгоритм регулятора – пошаговый, управление током – ШИМ.
  6. Подсчет Ампер*часов при разряде АБ. Разряд производится только после полной зарядки АБ. (При выборе режима разряд, если АБ не дозаряжен, автоматически производится дозаряд, а затем уже разряд с подсчетом Ампер*часов.)
  7. Включение подсветки дисплея (LIGHT). Выбор в меню. Параметр Подсветка вкл – подсветка включена всегда. В режиме авто выкл – подсветка включается при подаче питания на 30 сек и при нажатии на кнопки. Через 30 сек от последнего нажатия на кнопки подсветка отключается.
  8. При любой остановке программы подается прерывистый сигнал (0,5 Гц) на вывод 4 МК. Отключается сигнал нажатием кнопки старт.
  9. Программа отслеживает правильность установки напряжений. Минимальное напряжение (Umin) не может быть установлено выше либо равным максимальному (Umax). И наоборот.
  10. В режиме старт нажатие на кнопку PLUS или MINUS выводит на индикатор текущую информацию о состоянии процесса. В верхней строке ток и напряжение. В нижней строке оставшееся время (подробно) и выходная мощность в процентах.

Схема и печатные платы ЗУ

Схема управляющего блока

Схема источника питания

Работа зарядного устройства

1. Программа запускается/останавливается нажатием на кнопку старт из любого окна программы. Если кнопка нажата, когда программа запущена, устройство переходит в режим финиш (окончание работы программы). Следующее нажатие переводит устройство в первоначальное состояние (основное окно индикатора).

2. Если напряжение на аккумуляторе ниже, чем Umax/4, считается, что аккумулятор не подключен или неисправен. На дисплей выводится надпись No Bat. В режиме START название выбранного режима мигает.

Режим Зарядка

Программа контролирует напряжение и ток на АБ. Если напряжение ниже заданного в настройках Umax – работает стабилизатор зарядного тока с заданием Is. Если напряжение достигло Umax – остановка программы. Индикация заряд выкл.

Читайте также  Проводим замену салонного фильтра на nissan x-trail т30 и т31 фото и видео

Если напряжение стало выше Umax на 0.2 – остановка программы, индикация ERROR в верхней строке. В нижней строке напряжение, при котором произошло отключение.

Если ток заряда I превысил ток Is на 0.2 на время более 5 сек – остановка программы, индикация ERROR.

Если истекло время заряда (параметр H, часы) – остановка программы, индикация ERROR в верхней строке. В нижней строке надпись Time out.

Режим Разряд

Если при старте программы напряжение на АБ ниже Umax, включается дозаряд АБ с током Is. После достижения напряжения Umax начинается разряд АБ с током Ii. Ведется подсчет емкости АБ.

Когда напряжение на АБ достигнет Umin разряд прекращается, на индикатор выводится индикация разряд выкл и емкость на АБ-. AH Vm 11.0 – минимальное напряжение на АБ.

Если истекло время дозаряда или разряда (для дозаряда и заряда устанавливается время H) – остановка программы, индикация ERROR.

Если ток заряда или разряда превысил установленные на 0.2 – остановка программы, индикация ERROR в верхней строке. В нижней строке ток, при котором произошло отключение.

Режим КТЦ АКБ

При старте программы включается заряд АБ с током Is. Через 1 сек АБ переключается на разряд с током Ii. Еще через 1 сек АБ снова переключается на заряд. Так продолжается до тех пор, пока напряжение не достигнет Umax – программа останавливается. Индикация КТЦ выкл. Если напряжение стало выше Umax на 0.2 – остановка программы, индикация ERROR. Если ток заряда или разряда превысил установленные на 0.2 – остановка программы, индикация ERROR.

Если истекло время заряда (параметр H) – остановка программы, индикация ERROR в верхней строке. В нижней строке надпись Time out.

Выбранный режим после отключения от сети не запоминается. При включении всегда режим зарядка.

Обозначение символов на дисплее

  • V -измеренное напряжение на АБ
  • Vs(max) -напряжение до какого будет произведен заряд
  • Vmin(m) -минимальное напряжение на АБ при котором разряд будет отключен
  • I -измеренный ток заряда
  • Is -установленный ток заряда
  • Id — измеренный ток разряда
  • Ii -установленный в меню ток разряда(стабилизация тока разряда)
  • Imin -минимальный ток при котором заряд будет окончен
  • H -время таймера. Для вех режимов.
  • Hi -оставшееся время до отключения по таймеру
  • P -емкость АБ-Аh
  • LED -подсветка

1.При подключении к сети устройства вывести на дисплей информацию-если АБ подключена

1.1.Напряжение до какого будет произведен заряд. По умолчанию Vs=14.2 (Диапазон выбора в меню 1-30 вольт.)

1.2.Установленный ток заряда. По умолчанию Is=0.5А.( диапазон выбора в меню 0.5 -10А.дискретность 0.5А.)

1.3.Реальное напряжение на АБ. Например-V=13.7

1.4.Режим по умолчанию — зарядка (режим можно изменить в меню. Названия режимов. заряд . разряд. ктц акб.)

РЕЖИМ 1.заряд

Если АБ не подключена-вместо напряжения на АБ вывести надпись — no bat.Все остальное как и при подключённой АБ.

Пример 1.0. батарея не подключена

Vs=14.2 Is=0.5A
? АКБ Заряд

При нажатии кнопки start — запустить установленный режим. При повторном нажатии — остановить. при запущенном режиме — название выбранного режима мигает. при остановленном — горит постоянно.

Пример 1.1. батарея подключена.

Vs=14.2 Is=0.5A
V=13.7 Заряд

При запущенном режиме вместо установленного напряжения до которого будет произведен заряд отображать реальный ток заряда. Пример I = 3.6 A

Пример 1.2. идет заряд.

I=3.6A Is=0.5A
V=13.7 заряд

После окончания заряда (по таймеру или по достижению установленного напряжения на АБ или ток заряда снизится до I=min) отключить заряд и вывести – заряд выкл.

Если ток заряда превышает установленный в меню. А также напряжение на АБ превысило установленное в меню-отключить заряд и вывести надпись — ERROR.

РЕЖИМ 2. разряд

2.При выборе режима- разряд (при запуске этого режима автоматически зарядить АБ до установленного напряжения и затем начать разряд.

Пример 2.0. Индикация в основном окне режима. Если режим не запущен-название режима (разряд) не мигает. При запущенном режиме, название режима используемого в данный момент (заряд или разряд) мигает.

Если режим запущен. АБ не заряжена. Идет автоматический заряд, после которого начнется разряд.

I=0.5A заряд
P=0Ah

2.1 Ток разряда по умолчанию A. Диапазон выбора в меню 0.5-10 А. дискретность 0.5 А.

2.2. Hi — Время оставшееся до конца разряда после истечения которого разряд будет отключен по умолчанию.

2.3. Измеренная емкость батареи P=. Ah (пример Р = 45.4Ah).

Пример 2.1. окно в процессе разряда

Id=0.5A Hi=10
P=45.4Ah разряд

После окончания разряда подать сигнал с паузой 1 секунду. И так пока не будет включен другой режим. Сигнал подать на вывод 4 МК. Светодиод out. На дисплей вывести надпись верху — P=. Ah. Vm=11.0 внизу — разряд OFF.

Пример 2.2. разряд окончен

P=100.3Ah Vm=11.0
Разряд выкл

РЕЖИМ 3. Ктц акб. Десульфатация.

В основном окне режима, если режим запущен, название режима (КТЦ) мигает. Если не запущен — не мигает.

3.1. Ток заряда по умолчанию Is = 5А. Диапазон 0.5-10 А

3.2. Ток разряда Диапазон 0.5-10 А.

3.3. Напряжение на АБ. Частота 1 Гц.

Пример 3.0. идет десульфатация.

I=5.0A Id=0,5A
V=14.2 КТЦ-АКБ

После окончания заряда(по таймеру или при достижении установленного напряжения, режим отключить) вывести надпись — КТЦ ВЫКЛ. И напряжение на АБ.

Пример 3.1.конец работы.

V=14.7
КТЦ ВЫКЛ

Остальные настройки в меню. Все файлы находятся в архиве. За подробностями обращайтесь на форум. Автор: Александрович.

Форум по обсуждению материала ЗАРЯДНОЕ ДЛЯ АВТО НА КОНТРОЛЛЕРЕ

Электромагнитное реле — теория и практика применения. Обозначение, виды, основные параметры и правила эксплуатации.

Схема простого кварцованного передатчика FM диапазона на мощность до 0,2 Вт, при питании от 12 В.

Сравнение активных и пассивных радиодеталей, основы классификации.

Описание контроллера заряда акб, детальное руководство по изготовлению

Зарядное устройство для автомобильных аккумуляторов на Atmega 8.

Автор: nbo
Опубликовано 26.01.2018
Создано при помощи КотоРед.

Хочу представить вниманию зарядное устройство (ЗУ) для автомобильных аккумуляторов на Atmega 8. Данное устройство является моим вариантом ЗУ описание которого выложено в [1]. Очень рекомендую сначала прочитать описание оригинального ЗУ для снятия многих вопросов. К достоинствам ЗУ можно отнести использование силового трансформатора от бесперебойников, защиту от короткого замыкания и переполюсовки. ЗУ можно собрать в корпусе бесперебойника что снимает проблему всех устройств радиолюбителя – корпус.

После изготовления нескольких штук по оригинальному описанию я пришел к заключению что использование Atmega16 является избыточным, как по обьему памяти так и по количеству портов вводавывода. Поэтому было решено перевести проект на Atmega 8, тем более что исходники Автором были любезно выложены.

После тщательного курения даташита, а особенно замечательной книги [2] получилось переделать прошивку для Atmega 8. Также мною были внесены некоторые изменения в схему устройства для придания некоторой универсальности в части возможности использования различных компонентов. Схема того что получилось представлена ниже:

Как видно устройство разделено на две части: микроконтроллера (МК) и силовую.

Некоторые обьяснения по схеме контроллера. К разьему pow-in подключается маломощный внешний трансформатор с напряжением вторичной обмотки порядка 10-15 вольт, после выпрямления напряжение подается через развязывающий диод D9 на стабилизатор 78l12, который используется для питания операционного усилителя цепи измерения тока, и стабилизатора 7805 который питает микроконтроллер. Резисторы R32, R1 и стабилитрон D10 с напряжением стабилизации 5.1 вольт формируют сигнал прерывания МК для определения момента перехода сетевого напряжения через ноль.

На операционном усилителе (ОУ) U5 типа LM358 собраны усилитель сигнала с шунта для измерения зарядного тока и усилитель сигнала с шунта для определения перегрузки. Питание ОУ осуществляется напряжением 12 вольт и напряжением -5 вольт, которое преобразуется при помощи ICL7660 из напряжения +5 вольт. Использование ICL7660 позволяет отказаться от применения трансформатора с двумя вторичными обмотками, как в оригинальном устройстве. Кроме того предусмотрен вариант использования Rail-to-Rail ОУ, что позволяет вообще отказаться от источника питания +12 вольт, преобразователя ICL7660, а также защитных диодных сборок D6, D7. Был испытан образец на ОУ MCP6002 который себя неплохо зарекомендовал. При использовании Rail-to-Rail ОУ не устанавливается стабилизатор 78l12 и конденсатор C15. Впаивается нулевая перемычка R13 для питания ОУ от +5 вольт, а вместо конденсатора C13 впаивается нулевая перемычка на корпус. Таким образом организуется питание +5 вольт для ОУ. При сборке нужно внимательно следить какой вариант собираете дабы не повредить ОУ и МК при несоответствии типа применяемого ОУ напряжению питания.

Диодные сборки D6, D7, D11 служат для защиты портов МК от перенапряжения и напряжения обратной полярности. В оригинальной схеме для этой цели используются стабилитроны на 5.1 вольт, но при сборке устройства выяснилось что они вносят погрешность при измерении тока и напряжения, т.к. начинают приоткрываться при напряжении порядка 4.8 вольта. В устройстве АЦП МК использует в качестве опорного напряжения напряжение питания +5 вольт, а следовательно АЦП охватывает весь диапазон от 0 до 5 вольт. Установка D11 обязательна.

Разьем ISP1 служит для внутрисхемного программирования МК, распиновка его стандартна для варианта 6 контактов. Реле RL1 служит для включения силового трансформатора. Транзистор управления реле любой средней мощности типа npn, ставил КТ817. Реле выпаивается из платы бесперебойника, также в зависимости от типа платы можно выпаять кварцевый резонатор на 8 Мгц, стабилизатор 7805, стабилизатор 7812 для силового модуля. Переменным резистором RV1 устанавливаем контрастность дисплея. Дисплей используется типа 0802 с кирилицей. Типоразмер всех используемых SMD резисторов и конденсаторов 1206. Конденсатор C16 танталовый SMD 10мкф 16 вольт.

Читайте также  Характеристика японского моторного масла eneos, отзывы автовладельцев

В силовом модуле стабилизатор 7812 служит для питания вентилятора обдува радиатора на котором устанавливается силовой диодный мост типа KBPC5010 или аналогичный, а также тиристор 40TPS12. В данной версии прошивки обдув включается при токе зарядки 2А, выключается при 1А. В качестве радиатора идеально подходят так называемые «процессорные». Предохранитель FU1 автомобильный на 30А, впаивается прямо в плату. Такие попарно установлены на плате бесперебойника. Резисторы R1-R7, R12, R13, R16 типоразмера 1206 на 0.1 Ом впаяны параллельно и образуют шунт для измерения тока. Транзисторы ключей для управления вентилятором и тиристором использовал типа КТ816Б, можно использовать любые средней мощности типа pnp.

К точкам BATT припаиваются провода с крокодилами для подключения к батарее, к точкам BRIDGE провода с наконечниками для подключения к диодному мосту. Провода с наконечниками также из бесперебойника. К разьему FAN подключают вентилятор охлаждения.

Силовая плата и плата МК соединяются 2-мя шлейфами с 3-мя проводами: сигнал измерения напряжения – общий – сигнал измерения тока и сигнал управления тиристором – общий силовой – сигнал управления вентилятором. ВНИМАНИЕ: общий и общий силовой не долны соединятся в шлейфах они впаиваются в соответствующие места платы и никак между собой не связаны.

После сборки и проверки монтажа подключается ЗУ к сети, если все правильно собрано после экранов приветствия появится надпись «Подключи батарею». Подключаем аккумулятор или внешний источник напряжением 12 вольт к крокодилам и подстроечным резистором RV6 выставляем напряжение на экране ЗУ соответствующее напряжению аккумулятора или источника питания по контрольному вольтметру. Далее подключаем ЗУ к аккумулятору через амперметр, вращаем энкодер по часовой стрелке выставляя зарядный ток 1А и нажимаем ручку энкодера, на экране появляется надпись «Заряд начат» и зарядный ток начинает плавно увеличиваться от нуля до утановленного значения. Подстроечным резистором RV3 выставляем правильные показания тока на экране ЗУ по контрольному амперметру. Выставлять следует при установившемся значении на экране. Подстроечным резистором RV4 выставляем напряжение на входе 24 МК равным 0.09в при зарядном токе 1А.

Для справки: для входов измерения тока и напряжения АЦП МК максимальные значения в +5 вольт соответствуют 15 амперам и 15 вольтам. Для входа измерения перегрузки по току напряжение отключения тока зарядки – 1 вольт.

Подключаем ЗУ к сети, подключаем батарею, устанавливаем требуемый ток заряда в диапазоне 0-10А вращением энкодера, нажимаем энкодер. Ток заряда плавно растет до установленного значения. При достижении на батарее 14.4 вольта ток плавно падает при условии неизменности напряжения на батарее в 14.4 вольта. При падении тока зарядки ниже 0.5А и напряжении 14.4 вольта считается что батарея заряжена и зарядка прекращается — выводится надпись «Батарея заряжена». При невозможности достижения напряжения на батарее в 14.4 вольта при токе 0.5 А в течении 4 часов выводится надпись «Проверь батарею не берет заряд» и заряд отключается. Если при включении зарядки ток не растет появляется надпись «Плохой контакт с батареей» и заряд отключается. При пробое тиристора и неконтроллируемом увеличении напряжения выше 15 вольт заряд отключается и появляется надпись «ERROR VOLTAGE». При чрезмерном увеличении тока заряда или КЗ также заряд отключается и выводится надпись «Ошибка по току». Чтобы досрочно прервать заряд энкодером уменьшаем ток до нуля и нажимаем энкодер или просто снимаем клемму с батареи. Для изменения тока заряда в процессе зарядки вращаем энкодер и нажимаем, появляется надпись «Ток изменен».

DIY-зарядник для аккумуляторов ноутбуков на базе контроллера MP26123/MP26124

Это не первый мой проект по разработке зарядного устройства для батарей ноутбуков. Отмечу, что в первом проекте я использовал Max1873. Но для контроля заряда пришлось использовать микроконтроллер ATtiny. Все бы ничего, но здесь требовалось написать специфический код, что усложнило проект.

Второй проект работает на базе MP26123 или MP26124 от Monolithic Power Systems. Эти чипы дают возможность заряжать разряженный аккумулятор, прекращать зарядку при достижении 100% уровня заряда, разряжать уже заряженную батарею и контролировать ее температуру. Достоинством контроллеров является еще и то, что основной FET-свитч расположен внутри, что снижает сложность компоновки. Пример собранной платы — в самом начале статьи. Ну а под катом обсудим подробности проекта.

Подробности проекта

Для разработки платы я изучил спецификацию контроллеров MP26123 и MP26124. Обозначения элементов, которые нужны для платы, показаны на схеме ниже. Есть и исходный файл, если вам захочется изменить дизайн платы.

Важный момент: контроллеры не понижают ток заряда, не ограничивают входной ток. Но на плате есть плавкий предохранитель на 5А. Вместо традиционного для многих плат диода Шоттки я использую PFET для снижения нагрева. PFET вместо диода также используется, чтобы не использовать падение напряжения на диоде в 0,4В. Это важно, поскольку энергии от близкой к полному разряду батареи из 3 ячеек едва хватает для подсветки экрана ноутбука. Контроллеры MP26123/MP26124 запитывают нагрузку понижающего стабилизатора LM2596 либо от батареи, либо от входных 19В. Падений напряжения при подключении или отключении блока питания нет. Контакт включения MP26123/MP26124 находится на самом краю платы, так что при необходимости Pi может отключить зарядку.

На простой SR latch всегда подается питание для того, чтобы активировать нагрузку понижающего регулятора. Это требуется в случае включения кнопочного выключателя питания. SR latch запитывается от 3,3В линейного регулятора или от входного 19В питания. Ток, потребляемый батареей при отключенной нагрузке понижающего регулятора, составляет 315 мкА. Внутренний саморазряд батареи в 2% плюс потери в 3% из-за защитной схемы приводят к полной разрядке аккумулятора за 324 дня. Если вы не планируете использовать ноутбук все это время, лучше просто вынуть аккумулятор. В этом случае саморазряд в 2% приведет к полной разрядке батареи примерно через два года (при условии, конечно, что батарея при извлечении была заряжена на 100%).

Если напряжение аккумуляторной батареи падает ниже 3В для одной ячейки, контроллеры MP26123/MP26124 выполняют предварительную зарядку в течение 30 минут, снижая ток до 10% от тока заряда. Благодаря резистору R12 я снизил полный ток заряда до 1А. Согласно спецификации, контроллеры могут выдержать и 2А, но мне не хотелось сильно нагружать систему. Как только напряжение аккумулятора достигает максимального уровня, зарядное устройство перейдет в ждущий режим (в 10% от номинального тока), а потом отключится.

Максимальное время зарядки установлено на 4,5 часа с конденсатором С6 емкостью в 0,15 мкФ. Значение времени можно менять путем изменения емкости конденсатора — для этого есть таблица данных с формулой. При необходимости термистор батареи 10K NTC может быть подключен к контроллеру питания для отключения тока заряда при повышении или, наоборот, понижении температуры до заданного уровня. По дефолту отключение будет выполнено при 40° C (верхняя граница) или 11° C (нижняя). Если термистор не подключаете, то установите резистор на 10К для эмуляции комнатной температуры.

К сожалению, у контроллеров MP26123/MP26124 есть ряд недостатков. Так, их можно использовать только для заряда ячеек литиевых батарей с напряжением каждой ячейки не более 4,2В. Старые аккумуляторы, где значение было 4,1В, и новые с элементами 4,35 В заряжать при помощи этого устройства нельзя. Но если установить контроллер Max1873, то проблем нет.

Что касается пайки контроллеров, то я использовал самодельную печь, но, конечно, для сборки платы лучше использовать паяльную станцию с нагревом воздуха.

Особенности платы

Ширина дорожек на плате рассчитана на ток не менее 3A. Было проверено несколько вариантов, в итоге было решено остановиться на минимальной ширине дорожек в 5 мм. В первом варианте платы использовалось 3,3В от MP26123 для SR latch, что активировалось лишь при подключении к розетке. Обновленная конструкция включает отдельный линейный регулятор на 3,3В, который поддерживает SR latch в рабочем состоянии хоть при подключенном питании, хоть без него. Размеры платы 62 мм * 54 мм.

Что касается цены, то три платы, изготовленные OSHPark.com, мне обошлись в $26 с доставкой силами USPS. Можно использовать и JLCPCB.com, для этого воспользуйтесь файлом архива MPS_Charge_Controller_2021-02-23.zip. Пять плат обойдется заказчику в $10 со стандартной доставкой.

На графике ниже показаны результаты тестирования MP26123, заряжающего аккумуляторную батарею 3S2P от Lenovo T61.

Также я разместил инструкцию на Instructables, где показано, как подключить плату зарядного устройства батареи к Pi, Teensy и видеокарте. В мануале рассказывается, как использовать Raspberry Pi с питанием от батареи в модифицированном ноутбуке. Там же приложен код на Си, который управляет связью с батареей по шине SMBus, отображая указатели уровня заряда и выключая ноутбук при разряде.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: